Retinal bipolar cell input mechanisms in giant danio. II. Patch-clamp analysis of on bipolar cells.
نویسندگان
چکیده
Glutamate receptors on giant danio retinal on bipolar cells were studied with whole cell patch clamping using a slice preparation. Cone-driven on bipolars (Cbs) and mixed-input on bipolars (Mbs) were identified morphologically. Most Cbs responded to the excitatory amino acid transporter (EAAT) substrate d-aspartate but not to the group III metabotropic glutamate receptor (mGluR) agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4) or the AMPA/kainate receptor agonist kainate, suggesting EAATs are the primary glutamate receptors on Cbs. The EAAT inhibitor dl-threo-beta-benzyloxyasparate (TBOA) blocked all light-evoked responses of Cbs, suggesting these responses are mediated exclusively by EAATs. Conversely, all Mbs responded to d-aspartate and l-AP4 but not to kainate, indicating they have both EAATs and group III mGluRs (presumably mGluR6). The light responses of Mbs involve both receptors because they could be blocked by TBOA plus (RS)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG, a group III mGluR antagonist) but not by either alone. Under dark-adapted conditions, the responses of Mbs to green (rod-selective) stimuli were reduced by CPPG but enhanced by TBOA. In contrast, both antagonists reduced the responses to red (cone-selective) stimuli, although TBOA was more effective. Furthermore, under photopic conditions, TBOA failed to eliminate light-evoked responses of Mbs. Thus on Mbs, rod inputs are mediated predominantly by mGluR6, whereas cone inputs are mediated mainly by EAATs but also by mGluR6 to some extent. Finally, we explored the interactions between EAATs and mGluR6 in Mbs. Responses to d-aspartate were reduced by l-AP4 and vice versa. Therefore mGluR6 and EAATs suppress each other, and this might underlie mutual suppression between rod and cone signals in Mbs.
منابع مشابه
Retinal bipolar cell input mechanisms in giant danio. III. ON-OFF bipolar cells and their color-opponent mechanisms.
Whole cell patch recording was performed from morphologically identified cone-driven on-off bipolar cells (Cabs) in giant danio retinal slices to study their glutamate receptors and light-evoked responses. Specific agonists were puffed in the presence of cobalt, picrotoxin, and strychnine to identify glutamate receptors on these cells. Most Cabs responded to both the alpha-amino-3-hydroxy-5-met...
متن کاملRetinal bipolar cell input mechanisms in giant danio. I. Electroretinographic analysis.
UNLABELLED Electroretinograms (ERGs) were recorded from the giant danio (Danio aequipinnatus) to study glutamatergic input mechanisms onto bipolar cells. Glutamate analogs were applied to determine which receptor types mediate synaptic transmission from rods and cones to on and off bipolar cells. Picrotoxin, strychnine, and tetrodotoxin were used to isolate the effects of the glutamate analogs ...
متن کاملHomeostatic Plasticity Shapes Cell-Type-Specific Wiring in the Retina.
Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning....
متن کاملRecording light-evoked postsynaptic responses in neurons in dark-adapted, mouse retinal slice preparations using patch clamp techniques.
The retina is the gateway to the visual system. To understand visual signal processing mechanisms, we investigate retinal neural network functions. Retinal neurons in the network comprise of numerous subtypes. More than 10 subtypes of bipolar cells, ganglion cells, and amacrine cells have been identified by morphological studies. Multiple subtypes of retinal neurons are thought to encode distin...
متن کاملVoltage-dependent Na(+) currents in mammalian retinal cone bipolar cells.
Voltage-dependent Na(+) channels are usually expressed in neurons that use spikes as a means of signal coding. Retinal bipolar cells are commonly thought to be nonspiking neurons, a category of neurons in the CNS that uses graded potential for signal transmission. Here we report for the first time voltage-dependent Na(+) currents in acutely isolated mammalian retinal bipolar cells with whole ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 93 1 شماره
صفحات -
تاریخ انتشار 2005